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Abstract: Odor biology has accomplished conformist role in shaping co-evolution of plant-

animate existence of the planet ensconced upon inter communicating linkages other than audio-

visual reciprocation. Semiochemicals comprising significant fractionation of Volatile Organic 

Compounds (VOCs) constitute pool of natural odor be classified as pheromones and 

allelochemicals with subclasses. Objective of the review lies in pointing out brief insight of the 

formative and transducing mechanism for conventional plant originated volatile molecules (not 

aiding the purpose of sex) in higher animals and manifestation of inhalation in their physiological 

kinesics emphasizing onto cat (Felis catus) attractant molecules from various plant families 

discovered till present along with comparative behavioral analysis. The illustrative methodology 

of olfaction in vertebrates and higher brain structure for semiochemicals of plant origin frame the 

distributary pathways of odorant perception via main olfactory bulb for conventional VOCs and 

accessory olfactory organs like vomeronasal organ (VNO) for pheromones entrusting G-protein 

coupled receptor (GPCR) dependency especially in mammals. The numbers of intron-less coding 

sequences for olfactory receptors (OR I and OR II) considerably reduces in high end mammalian 

evolutionary stem leading to pseudogene constitution. The decade old story of distinct behavioral 

concoction found in subfamilies of Felidae with response to cis- trans configured active compound 

(Nepetalactone) from the genus Nepeta and matatabilactone, actinidine like hallucinogen from 

species other than Nepeta was correlated with recent discovery of prolonged drug like response 

of cat to iridoid compounds (Isodihydronepetalactone and isoiridomyrmecin) and seven Gas-

Chromatography (GC) identified Non-steroidal anti- inflammatory drug (NSAID) compounds 

from non-aerial portion of Acalypha indica plant. With the analysis of unit behavioral aspect 

elaborated in literature and performed bioassay, it was found that though the reactive function to 

the latter was analogous to ‘catnip response', the exact pathway for olfactory signal transduction 

yet not clear especially for character like the genital licking which was not found earlier and also 

the same to be tested for other members of Felidae as well to draw the continuum. 
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1. INTRODUCTION 

Following chemotactic principle of motility for survival in living kingdom, Semiochemicals have 

established a pool of informatory molecules carrying high end potentiality for intraspecific and 

interspecific communications panning wide range of species in the ecosystem. The mechanism of 

signaling by producing chemical attractant or deterrent establishes a third channel for plant-plant, plant-

animal or animal-animal interaction beyond audiovisual trajectory of responsiveness.  Semiochemicals 

could be classified in broader groups of Pheromones (intraspecific) and allelochemicals (interspecific) 

where in the latter be sub-grouped further into Allomone, emitter friendly and Kairomone, receiver 

friendly in nature [1]. Many-a-times, these signaling molecules are volatile in nature with low-

molecular weight and comprises considerable percentage of Volatile Organic Compounds (VOCs). The 

science of odor has shaped wide array of communication taking from host-parasite interaction, 

induction of behavioral changes in pollinator insects and aphids, direct and indirect defense mechanism 

in plants, pest controlling agriculture [2] to mother-child interrelation, acceleration of puberty and block 

pregnancy, mediating as mighty sex attractant in higher animals [1], which contributed in structuring 

plant-animal co-evolution since time immemorial framing the ecological skeleton. Though the 

scientific repository provides illustrative studies on insect behavior in response to chemical signals from 

plants, such studies are less in comparison in case of higher animals or mammals in particular. Deterrent 

effect of monoterpenes like camphor and α-pinene on Flourensia cernua DC (tarbush) pellet 

consumption by sheep explained differential herbivory impacted by individual volatile compound or 

amalgamated form produced by shrubs [3, 4]. The study comprised of spraying selected chemicals such 

as α-pinene, camphor, limonene, cis-jasmone, β-caryophyllene and borneol individually on Alfalfa 

pellets for sheep consumption. Long back, induction of P450 oxidases in rat was established with 

response to α-pinene and borneol [5]. Probably such exclusive detoxification mechanism retained 

monoterpene consumption “Generally Recognized as Safe” for the mammals while toxic to insect 

community [6]. However, Estell's study revealed production of few leaf monoterpenes led to differential 

use of Alfalfa in selection of diet by the ruminants. Deviated adaptive mutualistic behavior of few 

Nepenthes sp. from simple carnivorous food habit have been shown just to accommodate the need of 

specific vertebrate species revealing unpredicted avenue for plant-animal coevolution [7]. Nepenthes 

hemsleyana, found in low land forest of Brunei Darussalam has developed alternate pitcher with 

elongated tube and low-level fluid to provide roosting space for Kerivoula hardwickii (woolly bats) [8, 

9]. Similarly, N. lowii produces white jelly-like secretion that attracts Tupaia montana (tree shrews) 

[10]. Also, it has been reported that N. rajah, another Nepenthes species of higher mountain has been 

adopted itself to successfully capture faeces of T. montana and Ratus baluensis (summit rats) in its 

pitcher by virtue of their positioning while accessing the nectar [11,12]. The story of cat attracting plant 

Nepeta cataria is well known to humanity for decades. Such behavioral attribute called “catnip 

response” has been proved to be a manifestation of Nepetalactone, an insect repellent as the first 

identified cat attractant chemical from the plant reported but without performing bioassays [13]. Later 

an unpublished research work [14] reported a group of lactones containing epinepetalactone, 

iridomyrmecin, neonepetalactone, isodihydronepetalactone, dihydronepetalactone and 

isoiridomyrmecin along with nepetalactone itself eliciting such response in domestic cats. This 

interesting plant-mammal interaction indulged many researchers in recent time to investigate if any 

other cat attractant plant present in nature. 
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Figure 1. tree shrew (Tupaia minor) collecting nectar from the lower lid surface of 

Nepenthes gracilis pitchers [7] with a gesture of positioning their faeces inside the 

altered designed pitcher. 

 

     Mechanism of olfactory transduction for general odorants 

Science of olfaction constitute an obvious pathway of plant-animal coevolution by means of odor 

perception mediated by transducers and amplifying receptors. Plant odorants are integral 

component of semiochemistry though their mechanism of functionality differs in the range of 

animal taxa. Plant-pollinator relationship was well established conventionally as a derivative of 

odor biology [15] where it is indispensable to manifest important life cycle phenomena sometimes 

involving volatile semiochemicals of floral microbiome too, aiding the methodology of perception 

for insect community [16] but the nitty gritty for complex processing of any plant originated odorant 

in higher brain structure of the vertebrates and its expressive concoction brings the nuance in the 

study. In mammals, such perception of plant volatile ligand is occurred by Odorant Receptors 

(ORs), the largest family of heptahelical [17, 18] G-protein coupled receptor that spans the 

epithelial layer of Olfactory Sensory neurons (OSNs) in the posterior nasal cavity and is responsible 

for strong olfactory activity in mammals by converting chemical information into electric impulse 

and opening of nonselective cation channels with production of cyclic AMP (cAMP) pool [19] and 

neuron depolarization [20]. OSNs are bipolar neurons with dendritic end in nasal cavity and axon 

in olfactory bulb of higher brain [21, 22]. Odorant Binding Proteins (OBPs) containing lipocalins 

with β- barrel foldings [23] play significant role in passive transportation of hydrophobic odorant 

ligands through epithelial mucus layer by formation of OBP-odorant (ligand) complex [24] that 

selectively detected by olfactory neurons [25-27]. Whereas the epithelial activity of OSNs is an 

established hypothesis of first line response for smell sensitization in higher animals especially in 

mammals [28, 29], many advanced studies have demonstrated the chemosensory process to be more 

complex and tightly regulated [30, 31]. Trace amine-associated receptors (TAAR) expressed on 

olfactory epithelium are able to sensitize odorants containing volatile amines [32], similarly some 

members of guanylyl cyclase D(GC-D) expressing OSNs [33, 34] of dorsal olfactory bulb (OB), 

sensory neurons in the septal organ (SO) of nasoplatine duct [35, 36], mature Grueneberg ganglion 

(GG) of olfactory bulb (OB) expressing olfactory marker protein are functional instruments [37] 

for odor discrimination from the natural pool. 
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Figure 2. Canonical pathway of olfactory signal transduction in OSNs[B] via activation of 

heptahelical Olfactory Receptors [B] spanning posterior nasal cavity of mammals [22]. 

 

Table1. Cell signaling pathways responsible for transduction of some common plant originated 

volatile molecules [48] 
 

Sl No. Plant Volatiles 

(VOCs) 

Source Plant Regulator Pathway After Detection 

1   Zerumbone Curcuma zerumbet  Downregulating hedgehog (Hh/GLI) signaling 

pathway 

 Upregulating TNF-related apoptosis-inducing 

ligand pathway 

 Interference in NF-κB signaling Pathway 

2. Phytol Common plants  Interferon (TNF-β) signaling pathway 

3. β-caryophyllene Edible plants  Selectively binds with cannabinoid type-2(CB2) 

receptor 

 Inhibition of toll-like receptor complex

 CD14/TLR4/MD2 pathway 

4. Carvacrol Unknown  Activation of peroxisome proliferator-activated 

receptor gamma (PPAR-γ) 

 Downregulation of COX-2 pathway 

5. Thymoquinone Nigella sativa L.  Active in cyclooxygenase and 

lipoxygenase activity 

6. D-Limonene Citrus fruit  Binds with transient receptor potential melastatin-

8(TRPM8) described as prostate cancer marker 

B A 
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Mechanism of olfaction had been well studied for decades in insect model organism Drosophila 

melanogaster [38], worm Caenorhabditis elegans [39] and zebrafish Daniorerio [40] amongst which insect 

model attracts highest interest where antennal lobe behaves as equivalent of the Olfactory Bulb to the 

mammals. Here, both antenna and maxillary pulp [41, 42] containing the sensory hairs called sensilla [43, 

44] express Olfactory Receptor Neuron (ORNs) responsible for transduction of chemical information to 

higher brain structure like protocerebrum [45], therefore, constituting a G-protein coupled receptor (GPCR) 

independent pathway of scent perception [46]. Despite of bearing absolute different architecture for 

olfactory receptor organs, higher mammals (human) and insects show commonness in detecting volatile 

enantiomers of carvone, menthol, D-limonene, α-pinene etc. Similarly, S-(+)-carvone is sensed like 

caraway whereas R-(-)-carvone is detected like spearmint in human [47]. However, perception of odorants 

other than VOCs again constitute an GPCR pathway where Vomeronasal Organ (VO) acts as mediator to 

carry forward chemosensory response from Accessory Olfactory Bulb (AOB) to higher brain structure [21, 

22]. 

 

2. GENETICS OF ODORANT RECEPTORS 

Discovered in rat for the first time with extreme diverse amino acid sequences [49], Olfactory Receptor 

(OR) genes are also widely dispersed in mammal genome majorly into tandem cluster [50] and are intron 

less. They are encoded by multigene family ensuring higher diversity and broad distribution [51] except 

chromosome 18 and Y in mouse [52, 53] and chromosome 20 and X [54]. Depending on sequence and 

evolutionary track, the OR genes are categorized into two separate classes like OR I and OR II genes. 80- 

90% OR genes in mammals is made up of class II [55]. Though OR I genes were thought to be able to 

discriminate water-soluble odorants only with exclusive distribution in catfish [56] and amphibians [57], 

their presence was reported later in mammals too [58]. These genes contain ~1kb coding region with OR 

sequence motifs [59]. Number of intact OR genes vary considerably in different mammal species from 

~1000 in mouse and ~800 in dog to ~370 in human [59] and those who are unable to code functional OR 

proteins are termed as OR pseudogenes. However, the olfactory sensitivity in higher animals is much 

correlated with number of glomeruli present on each Olfactory Bulb rather than total number of intact OR 

genes in organism [60] and quantity of functional OR gene decreases in higher evolutionary stem [61]. 

The receptive mechanism of semiochemicals like pheromone by higher group of animals is initiated 

primarily by G-protein coupled receptors of V1R (Vanilloid type 1 receptor) and V2R (Vanilloid type 2 

receptor) on vomeronasal epithelium. While V1Rs expressing Gα12 are dominant in the apical neurons of 

vomeronasal organ, V2Rs are explicitly located in the basal neurons of the same with expression of Gαo 

subunit. Presence of functional V1R receptors have significantly diminished in higher group of mammal 

e.g., human genome consists of several V1R pseudogenes except only five functional genes. Dogs are able 

to perform exceptionally well functioned olfaction with only eight functional V1R genes. Phylogenetic 

analysis shows both of the gene families emerged to complement the basic olfactory requirements in 

rodents, however they underwent countable gene losses in carnivores in long run and also multiple 

mutations in their subfamilies to the level of non-functional pseudogenes [62]. 
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Figure 3. Schematic presentation of olfaction in higher animals [62]. Color blocks represent 

division of olfaction like Main Olfactory Bulb is involved in transmission of both conventional 

VOCs and pheromone (blue colored); Vomeronasal Organ (VNO), Septal Organ of Masera (SO) 

and Gruenberg Ganglion (GG) are involved in olfaction of pheromone (red and green block). 

 

 

3. BIOSYNTHETIC PATHWAYS FOR CONVENTIONAL PLANT VOLATILES 

Unlike plant produced primary metabolites used in growth, development and reproduction, the volatile 

compounds including semiochemicals comprise major percentage (~1%) of plant secondary metabolites 

[63] that play significant role in ecological communication. In addition to plants, major metabolic pathways 

in human, microbes (mVOC) and other animals are also responsible to emit airborne volatile compounds 

[2]. VOCs are sequestered carbons of lower molecular weight with higher vapor pressure for which cellular 

membranes of living organism show high permeability [64]. Being lipophilic in nature [63], the resultants 

of Lipoxygenase (LOX) pathway [48] include release of hydrophilic counterparts, reduction, 

hydroxylation/oxidation, methylation, acetylation reaction to furnish their biosynthesis [64] and are 

classified in distinct groups like terpenoids, alkaloids, carotenoids, fatty acid derivatives, phenyl propanoids 

and several amino acid derivatives. Four pathways namely mevalonate pathway (MVA), shikimate 

pathway, Methyl erythritol (MEP) and acetate pathway with spatial subcellular localization are responsible 

for origin of pool of volatile compounds. Amongst them only MEP pathway explicitly marks its presence 

in plastid with all its enzyme subset [65] that give rise to mainly monoterpenes, hemiterpenes and 

diterpenes. The MVA pathway considered for development of triterpenes and sesquiterpenes is 

conventionally localized in cytosol whereas some present study reports its distribution within cytoplasm, 



88 

 

peroxisome and endoplasmic reticulum [66, 67]. Both these pathways contribute isopentyl diphosphate 

(IPP) and dimethylallyl diphosphate (DMAPP) [68], the two five carbon isoprene building blocks those 

units for synthesis of further precursor molecules in the pathway like geranyl diphosphate (GPP) for 

monoterpenes, farnesyl diphosphate (FPP) for sesquiterpenes and geranylgeranyl diphosphate (GGPP)for 

diterpenes [69]. The precursors of shikimate pathway originate from pentose phosphate and glycolytic 

pathway to the formation of Phenylalanine (Phe) for giving rise to phenylpropanoid and benzenoid group 

of VOCs [70]. Though Phenylalanine formation occurs inside plastid [71], rest of the pathway is localized 

in cytosol. The group of fatty acid derivative volatile compounds are generated from Acetyl-CoA, the end 

product from glycolytic pathway through lipoxygenase (LOX) biochemical reactions using 13- 

Hydroperoxylelonic acid as an intermediate compound [72]. 

 
Figure 4. Schematic representation of biosynthetic pathway of plant Volatile Organic Compounds 

(in brief) with spatial organization in cellular compartments [2, 48, 63] mentioning formative 

pathways for cat [86, 90] and sheep attractant molecules [3]. Color blocks represent cellular 

compartments of plastid (green block) and cytoplasm (yellow block) 
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Figure 5. Hallucinogenic response to non-aerial portion (root) of Acalypha indica found in feral cats 

(Felis catus) similar to catnip [86]. 

 

 

4. PLANT-HIGHER ANIMAL COMMUNICATION FOLLOWING THE TERMS OF 
PLANT ODORANTS 

Researches have revealed plant originated volatile compounds establishes direct liaison with stimulated 

behavioral responses in higher animals. The fundamental and pioneering credit of findings in the direction 

must go to the discovery of Nepeta cataria (catnip) elicited response in Felis catus (domestic cat) almost 

200 years ago [73]. The term ‘catnip responses' include a group of behavioral expression [Table 2] 

independent of any sexual aspect [74] regulated by autosomal gene. Such kind of response had also been 

tested in wide range of animals within subfamilies of Felidae for which positive results were found in 

Pantherinae subfamily only [75] in Panthera leo (lion), Panthera tigris (tiger), Panthera pardus(leopard), 

Panthera onca (Jaguar), Panthera uncia (snow leopard) and in Neofelis nebulosa (clouded leopard) 

amongst which lions and jaguars were found to be extremely sensitive to catnip [76]. Chemical study of the 

plant revealed more than one molecule with cat attracting property, the principal compound being 

nepetalactone (cis-trans isomer, 70-99.9%) and epinepetalactone (trans-cis isomer, 0.1-30%) of essential 

oil obtained from catnip [77]. Differential combination of these two molecules was found in other species 

of Nepeta like Nepeta nepetella L., Nepeta sibthorpii Benth. and N. hindostana Haines and also in species 

other than Nepeta like Actinidia polygama, A. kolomikta, Valeriana officinalis L., Teucrium marum L. 

Menyanthes trifoliata L. and Menyanthes trifoliata L. Amongst these cat attractant molecules, 

matatabilactone, actinidine [78] and many indole compounds were classified as hallucinogens, potent 

inhibitors of acetylcholinesterase. Amazingly smoking of catnip was found to be pleasurable for human 

being [79] with a hint of its hallucinogenic effect [Table 2]. The operation of functionality explores that 

smell is the sole determinant of catnip originated cat attractant behavior where vomeronasal organ is not 
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involved directly in the process [80] but the ventromedial nucleus of hypothalamus was found to be 

responsible to respond to such olfactory stimulation [81]. Interestingly each unit of ‘catnip response' is 

apparently juxtaposed to sexual or ingestive behavior [82] whereas the removal of amygdala expressed no 

effect on such response to Actinidia polygama [83] suggesting a probable cross-reactive analysis of such 

response with some sort of naturally originated social odor in the family of Felidae like various glandular 

secretion and odor of urine and feces [84]. Study in recent decade revealing drug like activity of Acalypha 

indica or Indian nettle root on feral cat introduced a new chapter to the story of plant elicited cat attractant 

molecules wherein the interesting chemical analysis by the researchers has identified (4R,4aR,7S,7aR)- 

isodihydronepetalactone and (4S,4aS,7S,7aR)-iridomyrmecin from Acalypha indica dried root those 

matched with prepared synthetic hydrogenated oil from Nepeta cataria containing cis-fused and trans-fused 

nepetalactone [85]. Also, an Indian patent entitled ‘A METHOD FOR ISOLATING THE CHEMICAL 

COMPOUNDS FROM THE FRESH ROOTS OF ACALYPHA INDICA LINN' [86] has identified group 

of hallucinogenic, anti-spasmatic attractants of cat. Strong olfactory activity is well known in pig for 

distinguishing social odor, utilizing such recognition for reproduction [87, 88] and also respond to odor 

from non-social origin has reported [89]. 

 

Table 2. Higher animal responses to odor of plant origin 
 

SL 

No 

Molecules Responses 

1. Odor from Aniseed, Cedarwood, Pine, 

Thyme, Lavendel, Cinnamon bark, 

Ginger 

Repeated scratching of head and neck, flopping 

on either side of body with or without rubbing, 

sniffing in pig. [89] 

2. Alfalfa pellet mixed with volatiles of 

limonene, jasmone, β-caryophyllene, 

borneol 

Enhancement of consumption by sheep [3]. 

3. Smashed leaves of Nepeta cataria (catnip) 

releasing nepetalactone, epinepetalactone, 

dihydronepetalactone, 

isodihydronepetalactone, neonepetalactone, 

5,9-dehydronepetalactone 

Sniffing the odor, chewing leaves, licking with 

head shaking, body rubbing, head-over and side by 

side body rolling, paw licking and salivating, 

scratching soil [90]. In totality these behavioral 

expressions are called ‘catnip response'. 

4. N. hindostana Haines (native to India) leaves 

contain traces of nepetalactone 

Excites cat [91] 

5. Leaves and galls of Actinidia polygama 

silver vine) and A. kolomikta containing 

Matatabilactone which is a mixture of 

iridomyrmecin and isoiridomyrmecin [92], 

actinidine and beta-phenylethyl alcohol. 

‘Matatabi' reaction [82] and salivation in cat 
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6. N-(2-p-hydroxy-phenyl) ethyl- 

actinidine isolated from dried roots of 

Valeriana officinalis L. [93]; 

dolicholactone C and D from essential oil 

of Teucrium marum L. [94]; 

boschniakine and boschnialactone from 

Boschniakia rossica [95]; 

mitsugashiwalactone from Menyanthes 

trifoliata L. [95] 

Induce catnip response 

7. Isodihydronepetalactone and 

isoiridomyrmecin from Acalypha indica 

L. dried root [85] 

Induce catnip response 

8. Group of seven compounds (1- Oxaspiro 

[2.5] octane, 4,4- Dimethyl l-8-

methylene;1- 

Napthalenol, decahydro-4a- methyl; 

Carane, 4,5–epoxy-, trans; Naproxen, 

Nabumetone, Carpofen and Piperidine 

2,6-dimethyl-1- nitroso) from fresh roots 

of Acalypha indica L. [86] 

Hallucinogenic, drug-like, anti-spasmatic and anti-

inflammatory symptoms in cat apparently similar to 

catnip response. In addition to this licking of genital 

area was recorded by the inventors. 

9. Nepeta cataria smoking through 

cigarettes or pipes or sprayed on tobacco 

Makes human happy and helps for intoxication [96]. 

Has antispasmodic activity in humans. 

 

 

 

Figure 6. Classification of plant elicited cat attractant molecules [86, 90] 
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Figure 7. Chemical structure of potent cat attractants discovered till present [85, 86, 90] 

 

5. CONCLUSION 

The pool of all natural perfumes (odor) sourced to the environment could be discussed under two broad 

systems of general odorants and pheromones [97] aiding communication between living organism to its 

external world. In case of vertebrates and other higher animals, such communication is prerogative of an 

elaborative mechanism called olfaction, a type of chemo-sensation involving wide array of receptors 

expressed on peripheral sensory neurons transmitting chemical information to the main olfactory system of 

brain, principally for general odorants and accessory olfactory system (vomeronasal organ, SO and GG) for 

pheromone mostly [Figure 2], depending upon the nature of receptors. The odorant molecules function as 
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ligands to such receptors by forming odorant-receptor complexes could be assessed chemically based on 

their volatility where the olfactory epithelium is entrusted for detecting highly volatile compounds in 

relation to the vomeronasal organ [98] that requires direct contact with the source for initiation of olfaction. 

The unique response to the elicited volatile compounds from catnip by some of the members of Felidae had 

been demonstrated long back as an activity of main olfactory system, were anesthetized olfactory mucosa 

[75] and olfactory bulbectomy [80] had abandoned catnip behavior in totality eliminating the notion of 

vomeronasal organ (VNO) to be connected with such response. As oral administration of active compounds 

from Nepeta cataria failed to induce ‘catnip response' [99], it became thoroughly clear that ‘the smell' and 

not ‘the taste' was key to such response to occur [100]. Discovery of similar responses of feral cat to the 

root (non-aerial part unlike catnip) elicited compounds from Acalypha indica Linn. undoubtedly explores a 

novel domain in the direction with some differences of identified compounds from dried [85] and fresh root 

[86] of the plant. The compounds primarily identified from the fresh root determined a strong drug like 

effect [Table2] as shown in the bioassay which comprises all sort of behavior like catnip except the licking 

of genital area [86] which was not reported in case of catnip response and also longer interaction time was 

recorded in comparison to catnip [101]. Now, some unit behavior of catnip response like body rubbing and 

overhead rolling soon after chewing of the source were conventionally seen as sexual response in cat, thus 

linking of such behavior to activity of vomeronasal organ was an easy hypothesis to build up until the 

experiment of olfactory bulbectomy was successfully performed. Therefore, the exact pathway of response 

against Acalypha root in higher brain structure of cat is yet to establish in order to understand its real nature 

like whether it is an ingestive response, a pleasure response comprising of sexual unit behavior or mixing 

of any sort of social odor (saliva, genital secretion, urine etc.) thereto is involved to the process. Presence 

of Isodihydronepetalactone and isoiridomyrmecin [85] in the dried root system of Acalypha could not 

merely answer all and full elucidation of this chapter of neuroscience is required to understand the unknown 

co-evolutionary stems of life. 
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